博客
关于我
最原始的GAN-我开始慢慢的懂GAN了
阅读量:720 次
发布时间:2019-03-21

本文共 668 字,大约阅读时间需要 2 分钟。

生成器在GAN中生成虚假图片的过程如下:

  • 噪声输入:生成器首先接受一批随机噪声,这些噪声来自正态分布,形状为(batch_size, 100)。在代码中,batch_size通常设置为128,这意味着每次生成128张独立的虚假图片。

  • 生成过程:噪声数据通过一个全连接的生成器网络转换。生成器网络由多个隐藏层组成,每层都有激活函数(如LeakyReLU),以模拟真实神经网络的非线性变换。最终,生成器将噪声数据转换为形状为(batch_size,784)的虚假数字图片。784对应于28x28的尺寸,即一张标准的手写数字图像大小。

  • 输出处理:生成器输出的是虚假图片的数字形式,通常是一个一维的数组。为了可视化,需要将这个一维数组转换为二维的图片矩阵。例如,将784维的数据按照行转换为28x28的矩阵,然后使用Matplotlib等库进行显示。

  • 批量大小调整:为了更直观地查看生成的虚假图片,可以将批量大小设置为1。这使得fake_images变为一个784维的数据点,随后将其转换为28x28的二维数组,便于使用imshow函数显示图像。

  • 真实图片与虚假图片对比:真实图片通常也是从训练集中随机抽取一批,形状与虚假图片一致(如(128,784))。这意味着每次生成的虚假图片和真实图片都是128张独立的28x28图片,方便对比生成器的性能进步。

  • 总结:生成器通过将噪声数据转换为一维数字后,再通过激活函数和隐藏层生成符合原始数据分布的一维数字,最终的虚假图片通过特定的转换和显示函数呈现为解析后的数字图像,从而实现了生成虚假图片的功能。

    转载地址:http://uuoez.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0079---Log4j整合到Netty
    查看>>
    Netty工作笔记0080---编解码器和处理器链梳理
    查看>>
    Netty工作笔记0081---编解码器和处理器链梳理
    查看>>
    Netty工作笔记0082---TCP粘包拆包实例演示
    查看>>
    Netty工作笔记0083---通过自定义协议解决粘包拆包问题1
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty工作笔记0085---TCP粘包拆包内容梳理
    查看>>
    Netty常用组件一
    查看>>
    Netty常见组件二
    查看>>
    Netty应用实例
    查看>>
    netty底层——nio知识点 ByteBuffer+Channel+Selector
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty心跳检测
    查看>>
    Netty心跳检测机制
    查看>>
    netty既做服务端又做客户端_网易新闻客户端广告怎么做
    查看>>
    netty时间轮
    查看>>
    Netty服务端option配置SO_REUSEADDR
    查看>>
    Netty核心模块组件
    查看>>
    Netty框架内的宝藏:ByteBuf
    查看>>
    Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
    查看>>